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(z ,S)h are equivalent if and only if there is a ~ertain homomorphism between

t h e matrix rings generated by Q(t), t c CO ,~~) 
and Y(t), t ~ (O ,~). The

equivalence is identical to weak lumpability in the case where (Zn ,Sn)~ 
is a

re newal process.
Although the conditions for strong lumpability can be written in an

attractive form , they are too restrictive to be of any real interest. Weak

lumpabil ity is of more interest since (as will be shown) it occurs in less

tr ivial examples , but the necessary conditions are very complicated . The

eq uivalence def ined here in has the advan tage of having simple necessary and
sufficient conditions.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

NTIS
DOC 

‘

~ ~n
0

_ _ _  _ _  _ _  i



Abstract

We define a form of equivalence between Markov—renewal processes that

includes strong and weak lumpability as special cases, and examine its properties.

If ~X ,T }  is a Markov—renewal process with kernel Q(t) and {Z ,S }  is a

Markov—renewal process with kernel Y(t), then it is shown that {X ,T} and

{Z
~~
Sn
} are equivalent if and only if there is a certain homomorphism between

the matrix rings generated by Q(t), t c [0,°°] and Y(t), t c (0 ,oo] . The

equivalence is identical to weak lumpability in the case where {Z 
~
Sn} is a

renewal process.

Although the conditions for strong lumpability can be written in an

attractive form, they are too restrictive to be of any real interest. Weak

lumpability is of more interest since (as will be shown) it occurs in less

trivial examples, but the necessary conditions are very complicated . The

equivalence defined herein has the advantage of having simple necessary and

sufficient conditions.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



CHAPTER 1

1. Introduction. A random process (X ,T )  n l ,2,3,~~.. wi th X~ taking values

in a finite or countable set S (called the state space), and T tak ing  val ues

In [0,00) is called a Markov renewal process (MRP) if

P ( X
+1

=j, T
n+i 

< t Ix 0,x1, ~~~~~~~~~~~~~~~~~~~~ = P(X ~~~1=j ,  T +1
< t I X )

for all n C Z~ , j c S. t c [Ø,00 1 • Markov renewal processes arise

na turall y in que uei ng sys tems and sinc e renewa l processes and Markov chai ns

are special cases of MRP ’s, a large class of problems in the stud y of ra ndom

processes can be handled with Markov renewal theory.

Consider the departures from an M/G/l/N queue. Let T be the time between

the (~~_1)St and ~th depar ture , and let X~ be the number of cus tomers in l ine

the instant after the ~th depar ture. It is well known [3 1 that (X ,T )  i s a

~~P on a state space consisting of {0,1,2,~ ,NL Now consider t he

special case where G=~ I. Since the M/M/1 queue is an N/Gil/N queue, the

depar ture process is a MRP with a countable state space. By [1] and [3],

though , we know that in steady state the departure process from an N/N/i

queue is a Poisson process , which like any renewal process , is a one state IIRP.

Thus , in some sense , the in f in i te sta te MRP tha t represen ts the out pu t f rom an

M/M/l queue is equivalen t to a Poisson process. An enormous amount of work has

been do ne on sys tems wi th N/N/ i  queues tha t  never wou ld have been possibl e

were i t  not known t h a t  the output from an H/N/l queue is a l’oisson process. A l l y

t ime i t  can be shown tha t a MRP is “equiva lent” to a renewa l process , the  a mau n t

of c o m p u t a t i o n  necessary  to make statements about the  process w i l l  he d r a s t i c a l l y

reduced . This  paper is a f i r s t  s t ep  towards  g e t t i n g  ~aich r e st i l  t s .

~‘8 ii  i~i O9~
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When two random processes are called equivalent in this paper , it

means that certain specific conditions (to be given later) are satisfied

by the two processes. The conditions are strong enough to be of interest,

and weak enough to assure that there are plenty of examples.

2. Lumpability. Probably the simplest case of equivalence between MRP ’s is

lumpability in flarkov chains [ 8). Let be a Narkov chain on a finite or

countable state space S. Let A1,A2, ~~~~~ be a partition of 5, and let

F: S -~~ {A1,A2, “~~
An

} be the map that “lump s” the state space S onto the

partition {A1,A2, ~~~~~~ The process {F(X~)} may or may not be a Markov

chair.. In general , the probability of going from Ai to A~ in {F(X~)} will

depend on precisely which element of A
i the {X~} process is in. If for each

i and j, though, the probability of going from A1 to A~ is independent of the

State in Ai that the {X~} process is in, then the process {F(X~)} is a Markov

chain. When this happens we say {X~} is strongly lumpable to {F(X~)}. This is

a special case of the equivalence to be defined.

For example, say S a {l,2,3} and let (X5) have transition probability

matrix

/1 1 3

1~1 1 1
i 4

Let F(].)—A1, F(2) —F(3) —A 2. The process {F(X~)} is a Markov chain on {A1,A.,}

with transition probability matrix



flu
3

/1 4

1~‘ 12 2

If  ~X }  is strongly lumpable to (F(X )} then no matter which state in S

the process starts in, ~F(X )} will be a Markov chain. In fact, even if the

precise state that the process begins in is not known, the ensuing (F(X~
) }

process is a Markov chain.

Sometimes, even though {X~} is not strongly lumpable to {F(X~ ) } . the process

{F(X )} is a Narkov chain when {X~} is in steady state. When this happens we

say C X~ } is weakly lumpable to {F (X ~)}.

If S is a finite set with m elements and F(S) has n elements A1,A2,

(n < m), then the following m x n  matrix, U, can be constructed . Let

{o ~i f i~~~ A
i~~

l~ i f i c A ~

If  (X ~} has a steady state then there is a vector Ti that satisfies TIP

where P is the transition probability matrix for Let TI be an n X m

matrix with

0, if  j ~ A1,
ijij = 

TI
,i f j c A 1 .

~ ~kkr A i

The ~~~ row of ~ is the conditional probability of being in state j given that

the process is in steady state and that the process is in A1.



fl 
_ ‘ _ _7

~
_

A A A1 2 n-~ r -~ . . .~~~~
-

TI 2
— 

0 . .0 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . 0
L 

~k 
/. 11kk c A 1 

k c A 1

Ii . TI
m1 -rl m

20 0 .  •Q . .. 0 0 . .  .o

~ 
11k ~ ~kk c A 2 k c A 2I T —  -

TI TI
m

1
+l m

0 0 .  . .0 O~~ 
. .0 

II flL. k L. kk c A  k c An a

1 0 0 . • • 0

1 0 0 . . . 0
A1 : :

~ ~
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—- ---.-—--- - - - - — - -
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Kemeny and Snell [8], show that {X~}is strongly luinpable to {F(X )} if

and only if P U = !~
J( 1

~P1J) , and that if {F(X~)) is a Markov chain then its

transition probability matrix is UPIJ . They also show that TIP = ( UP ! J)~j or

— !J(UP!J) is a sufficient condition for C x )  to be weakly lumpable to {F( Xn
) } •

For example let s = {l,2,3} and set F(l) = A1, F(2) = F(3) = A2. Suppose the

transition probability matrix for CX } is

/1 1 1
/ 2  4 4

P —  1 1
- 

2 2 0

1 3

In this case It = ( 
4 , 4 , 4) so
/1 0 0~~ /1 0

1 1 =  1 I I
0 1/2 1/2/ and U = ( 0 1

0 1

{X} is not strongly lumpable to CF(X~)}  since P(F(X~) =A 1jF(X~_1) =A 2)

depends on whether X~_1 is equal to 2 or 3. This can be seen formally by noting

that PU ~ U(rtP U). In steady state, though, 
~
‘0
~n~~ 

is a Markov chain since

rIP = (TIP U)TI . The resulting Markov chain CF(Xn)) has a 
transition probability

matrix

/ 1/2 1/2
i l p u  =
- - 

\ 1/4 3/4

The necessary conditions for weak lumpability are much less appealing than

the necessary and sufficient condition for strong lumpability or the sufficient

conditions for weak lumpability . If y is a probability vector on S then define

-- - -~~~~~~— ~~~~~~~-_____ ..~~~ - -
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N’]
1 
to be the vector of conditional probabilities of being in state j

(j = 1,2, ...,-m), given that the process is in A1. For example, the ith row

of the matrix It is [fl]i• Let be the set of all finite sequences of states

in F(S) that end with A.. If A , A ~~~~~~~~ A , A and A. , A. ~~~~~~~~ A , A.
3 il ~2 ~k i 3]. 32 iq 3

are two elements of then for {X~} to be weakly lumpable to CF(X~
)} it must

be true that for each e c(l,2, -

~ 
~i8 ~± = ~ ~~~ 

2

it S 8CA it S B cA

where

1 ~i ~2 
1
3 

i
4 

1
k ~

I = [ - - -  [ [ [ [ ( I T ]  P] P] P1 . - .  P] P]

and

I ~2 ~2 ~3 ~l 4 .1 J
= [ . - .  [ [ [ [ [ I t ] PJ P1 P1 P] q P] -

Serfozo [10] showed that strong and weak lumpability can be defined for

MRP ’s in an analogous manner. In fact, the conditions for strong and weak

lumpability in MRP ’s are virtually identical to the conditions for Markov chains.

If {X ,T } is a MR.? on a finite state space S = {l,2,3, . . .m} , with
kernel Q(t) (i.e. Q~~(t) = P(X +1 j ’  T~~1 

< t j x 1~ = 1)) and F: S -
~ CA ,,A,,-~~ ,A }

is a partition of the state space then CX~~T~) is said to be strongly lumpable

- - to CP(X~),T~} if {F(X~),T~)is a MR.?.

Again, let ii be the steady state vector for the embedded Markov chain

(i.e. IIQ(o) = ii), and let rt ,IJ be defined as before. Serfozo shows that

(X~,T~} is strongly lumpable to (F(X )~T~} if and only if Q( t)IJ U(rrQ(t)U)

for all. t ~ [O ,m]. Likewise if for all t, Q(t)U — U(flQ(t)U) or flQ(t) — (IIQ(t) UY

then {F(X~)~T~} is a MR.? in steady state (i.e. weakly lumpable). Unfortunately ,

the necessary condItions for weak lumpability are again very complicated .

~ 

---- -~~~-- .-. -- - .- - - -- ---.- --.- --- .-. -~~~~ _ _
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Let I’ . be the set o f al l f in i t e  sequences of states in F(S) t ha t end with A~ .

If A. , A , - - -  A. , A and A . , A . , • . .  A. , A. are two elements of I’. and
‘i ~2 

‘ 1k i 31 ]2 J q 3 3

{t 1, t 2 ,  • •
~~

, tk} , 
~~ i’ s2 ,  - • •~~S

q
} are two sequences of posi tive real numbers

then for CX ~ ,T~ } to be weakly lumpable to {F (X n)
~

T } it must be true that for
each a c (1,2 , - - ~, n) and t c [0 ,00 ] ,

~ 
‘
~i 

( t )  = 
~ ~~~~~ 

Y~~
2

it S 8cA it S ~ cAa a
where

1 ‘2 
1
4 1k

I = [ [ [ [ [ [ I I ]  Q( t 1)] Q(t2)] Q(t3)] Q(t~~1)] Q(tk
)]

and

2 ‘~1= [ - . -  [ [ [[ [ i i ] Q(s1
)] Q(s2)] Q( s3)] Q ( S q_i

) ]  q Q(5q)l

In this paper a type of equivalence will be defined that includes all of

the cases discussed so far  and has the added property that a necessary and

suf f icient condition f or two MRP ’s to be equivalent can be wri t ten in a simple

form.

3. Definitions and Preliminaries. The following concepts will be used

th roughout this paper .

Definition 1.1. Let V be a vector space, and let T : V ~ V be a function ~~~

V. A subspace W of V is said to be invariant with respect to T if for all

w C IU , Tw C W.

For example , say V is Rn and T(v) =Av where A is an n X a matrix . If

w1,w2, , W
k 

are elgenvectors of A , then the space W spanned by w1,w2, ~~~~~~~

is invariant under T.

~

-- -- - --- -- -- ---- -~~~---- —-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Definition 1.2. A ring, R is a collection of objects along with two

operations +, - that satisfy the following properties: ya ,b,c c R,

(1) a + b t R

(2) a + b = b + a

(3) (a + b ) + c= a + ( b + c)

(4) ~ 0 t R that satisfies a + 0 a

(5) ~ — a that satisfies a + (—a) 0

(6) a - b C R

(7) a - (b.c) = (a-b) c

(8) a (b + c) = (a-b )  + (a-c)

(9) (b + c) a = (b-a) + (c-a)

The operation - need not be commutative in a ring. For example, the set

of all n x n matrices is a ring. In this paper we will be interested in various

subsets of the set of all n x n matrices tha t retain all the ring properties .

Definition 1.3. Let ja .}, i c I, be a collection of elements of a ring, R.

The ring, A , generated by {a
~~
) is the smallest subring of R that contains all

of the {ai}.

For example , consider the ring of integers Z. The ring generated by {2 }

is the ring of even integers. For a less trivial example consider the ring,

N, of n x a matrices . Let M1, M2, - . , ~~ be elements of N. A typical element

of the ring generated by ~1,M2, - - -  , Mk might be M~M4 + M~M~ — M,~.

Definition 1.4. Let and be two rings and let T : — L, be a map.

T is called a ring homomorphism (homomorphism) lf ,ya,b c

1~~ 

_ _ _ _ _ _
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I

(1) T(a-b) = T(a)  . T(b) and

(2) T(a + b) = T(a)  + T ( b ) .

Consider the following example of a ring homomorphism. Let I be some

vector in R~ and let be the set of all n x n matrices that have ~ ‘ as a

left eigenvector . If A t R1, define T(A) = a where a is the eigenvalue of A
associated with y. Thus T(A + B) = T(A) ÷ T(B) and T(AB) — T(A)T(B) so T is

a homomorphism from to R.

In this paper we will only consider a special class of MRP ’s defined as

follows .

Definition 1.5. An in state MRP, CX ,T}, 1 < m < 00
, with kernel Q( t )

will be called simple if

(1) Q
1~ (t) is nonnegative, nondecreasing and right continuous,Vi,j,

in

(2)  ~ Q . . ( 0 0 )  = 1, Vi ,
j =l ~

(3) Q~~(t) = 0, Vt c (-~ ,0), v i,j,

(4) ~~ TI t that satisfies

(4a) T Q(co) — fl

(4b) T I U = l  
-

(4c) lim Q
fl

(00) U T I
f l -~~~=

where U (1,1, .. ., 1) T

I
_ _ _ _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _
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Conditions ( 1) , (2 ) , and (3) assure that Q(t)U is a column of nonnegative

distribution functions . Condition (4) is equivalent to requiring that the

embedded Markov chain {X } is irreducible, aperiodic and recurrent non—null .

(See [2] for proof of this assertion and other similar results.)

Let {.
~~
,Tk} be an n state MRP with kernel Q(t) and say the initial

distribution on the state space is IT. The following quantities are of interest.

(1) P(T
1 

< t1x0 i)

(2) P(T
1 

< t)

(3) P( T
1 

< t1, T~ < t 2 , - • , T < t~ )

We can write (1) as

(4) P(T
1 < tIx 0 = i) = ~ P(X

1=j, T1 < = i) = (Q(t)U)~
j 1

Thus the column vector Q(t)U is a vector of probabilities of a transition

before time t given the initial state. To solve for (2), we weight each

initial state by the initial probability distribution, so

(5) P(T
1 

< t) — IIQ(t)U.

The i-~~ element of the vector IIQ( t) is the probability that starting

with the initial distribution It, the process has its first transition before

time t , and the transition is to state i. Likewise the i-~~ element of th&

vector TI Q(t
1)Q(t2) is the probability that starting with the initial

distribution TI , the process has its fIrst transition before time t1, its

second transition in less than t,, time units after the first transition, and

ends up in state i. Inductively , we obtain

(6) P(T
1 

< t~~, T2 < t 2 ,... ,T < t
~~

) a TIQ(t1)Q(t2) 
...

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  _ _ _ _ _  _ _  
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In Chapter II we define equivalence between MR.P’s and investigate its

properties. Sections 1—4 deal with the important special case where the

equivalence is between a MR.? and a renewal process (a one state MR.P).

Section 5 deals with equivalence between finite state MRP ’s.

CHAPTER II

1. Equivalence. A recurrent renewal process {s~} is a sequence of independent

and identically distributed nonnegative random variables with S~ < with

probability one. The sequence CS~ } can be thought of as the times between 
some

fixed event that occurs repeatedly. Associated with each MR.?, CX~~T~)~ is a

sequence {T~}. Suppose {X~~T~} is a simple MR.? on a f inite state space

S {l ,2, ”,N} with kernel Q(t). If I is the initial distribution on S then

(1.) P(T~ < t) = yQ(t)U where U (1,1, - -- ,l~ , and
(2) P(T

1 
< t1, T2 

< t 2, , T~ < t )  = yQ(t1) Q(c2) 
•. .  Q(t~ )U.

Let II be the steady state vector associated with the embedded Markov chain

(X } , and define r(t) = IIQ(t)U.

Le~~na 2.1. r(t) is the cumulative distribution of some nonnegative

random variable.

Proof. From conditions (1) and (3) of Definition 1.5, r(t) =0 if t <  0

and r(t) is nondecreasing and right continuous. From condition (2) we have

— tIQ( )U — ItU — 1 so r(t) is a distribution function of a nonnegative
ran dom variable. 

~

~
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For the r emainder of this chapter all MRP ’s will be assumed to be simple ,

and all the renewal processes will be recurrent. The following theorem

motivates the definition of equivalence between a MR.? and a renewal process.

Theorem 2.2. If CX
5,T~

} is in steady state then CT5} is a renewal process

if and only if Vm , Vt1,t,, “~~
tm~ 

IIQ(t1)Q(t2) 
-
~~ 
Q(t~ )U a r ( t1) r ( t2

) r ( t ~~) .

Proof. (—> ) if (T} is a renewal process then P(T1 
< t1, T~ < •

~~~~ < t~~)

a P(T~ < t~ ) P(T
1 

< t 2 ) - P(T 1 < t ) .  But this says

EQ(T 1) Q(t2) 
- 
~Q(t )U - r(t1) r(t,

) - - ~r(tm).

(~~~~~~ ) We must show that {T~} is a sequence of nonnegative independent and

identically distributed random variables. Since Q(t) > 0 it is clear that .T~ }

is nonnegative. Also r(t) is not a function of n, so it suffices to show that

{T~} is a sequence of independent random variables. Let 11,i2, - . - ~. be any

a positive integers. We must show that

P(T < t  , T <t ~~~~~~~ < t ) a P ( T  < t  ) P(T < t  )~~“P(T < t  )
i]~~ 1]. i2

_ 
~2 

1n ~n 
il— 11 12 —  

~2 
in — in

Since

P(Tj <t i ,  T1
<t1,  - ..,T~~~< t 1

) — P(T
1 <t 1, T2 < t 2~

...~T~ < t~~, ... ,Tj  < tin)

where

ti , ifj ik 
.

t
i

— 
. .

= , if j ~ (i1, i.,, i~)

we have P(T
1 <t 1, T2 <t 2,” , Ti < t i ) — r(t1) r(t2) r(tj ). But

r(t1) r(t2
) r(tj~ ) — r( tj1) r( tj~,) ~~

- r(tj~) since r(=) — 1. Thus ~T~} is

a renewal process. 0
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From now on the following notat ion will be used . The symbol Q will denote

a simple MR.? wi th kernel Q ( t ) .  The set of matrices {Q ( t ) ~ , t c [0,=}, along with

an initIal probability distribution on the state space, describe the MR.? in

çuescicn , since from them it is possible to determine all t ransi t ion probabil i tIes .

Thus , there is no ambiguity in using the symbol Q to denote a MR.?. Likewise, the

symbol r denotes the renewal process with distribution r(t) without ambiguity.

Definition 2.1. Let Q be a simple MR.? with steady state vector , and let

r be a renewal process. Then Q is equivalent to r 4~-r) if

(3) Va , t1, t 2 t~~, Q(t1
) Q(t2) - - . Q(t )U a r(t

1
) r ( t,) -“  r( t ) .

By theorem 2.2, Q is equivalent to a renewal process if and only if {T~~ is

a renewal process in steady state. Thus equivalence and weak lumpability are

the same thing when the lumping is to one state. From the defInition it is

clear t h a t Q - r  implies that r ( t )  — I I Q(t )L ’, which is the steady s ta te  distr ibut ion

of the time between state transitions in Q. The reason that the steady s ta te

vector TI is used in the definition comes from the following theorem.

Theorem 2.3. Let Q be a simple in state !-~ .P (in < ‘°) . If there exists a

probability vector, I, and a renewal process, f, such that

Yn , t1, t 2, . . - , t~ , IQ(t 1)Q( t 2 ) - - - Q ( t ) TJ —

then f(t) — r ( t ) ,  Vt  (i.e. IQ(t)U — TIQ (t)tJ , Vt). -

Proof. We split the proof up into two parts.

(case 1: m < ). We know that

1~ 1
1 i Q ~ ( )  ur a

r:H
lIt )

and so VC ‘ 0, ~~ such that if n > N ,

_ _ _ _ _ _  
--~~ --
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max Q~~~~
1

(s)  — ‘ ~/m . Thus the ~th column of Q~~~ (%) is

where a~ — < in for each i. Thus

- ) 
~ 

(
~ ~~ 

a~) - - 
~ “ k~~k - 2

k—I k l

in in

i L. Yk
t ak 

— fl4 I C/ in 
~ 

‘
~
‘kk l  ‘ k—i

This says that each element of the vector 1Q
f l l
(~) di f fe rs  from the

corresponding element of ii by less than c/rn. By hypothysis,

~.Q(t 1)Q(t 2 )~~ Q( t ~ ) U a f (t 1) f (t 2)~ - f (t ~ )~ so by letting t1 = t2 
— = ~~~ _ 1 

a

we get yQ~~
1(=) Q(tj.~)U=f(t). Let 1Q

n l
(,,) ~ V~ To show that f(t) = r(t) it

suffices to show that 2 Q(t ~ )U — TIQ(t~ )U I  is small .

— ItQ(t )U~ It — Z~~1Q(t )U 
< c/in UTQ(t  )U < C/rn uT~ - c.

Since c was arbitrary we have r(t) — f(t).

(case 2: m ) .  Fix c and choose N such that 
~ 

y
~ 

< c/7 , ~ < c/7.
1—N+l iaN+l

Since Q is simple we have lim Q~~ 4 (°’) II Vi , so we can choose N such that  n > N
J j

implies Q~j (w) — II .~ < c/7N for i,j < N.

We must show f(t) — r(t)~ is smal].,Vt . Since f(t) — yQ~ (~o) Q(t )U for
- 

any value of a, it suffices to show that for a > M, 1Q!
~(~ )Q(t )t T — r (t ) l is

smaii,Vt. Since r(t) — TIQ(t)U,

I~ Q~~~)Q(t)U - r (t) I ~~~ !yQ’~~
) - fl~Q(t)U ~ Z ~IQ

m ( )  -

• J— l

N
a \ IQ~~( )  — TI~ + ~~ yQ~~ ( )  —

j—l j—N+].

We have,

N N = N: ~YQ~~~ ) — It!~ -~~ ~~ I~~IQ 14 (00) — 2 a L Q~ 
( )  —

j—l j al i—i ‘ i—i j—l 

- -~~~- - - - - -•—— - - - - - -
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a 

i:l ~~i ~~~~~~~~~~~~~~~~~ 
— + 

~_~+1~
r j  

~;l 
Q~~~(00) —

I 
~

. 2 c/7N + - ( T Q~ 
(00) + ) < ~/7 + 2€/7 3~ /7.i— l j—i  i—N-i-i ~ i— i j—i i

Also,

00 00 ‘00 N 00
— it J < Y (IQ~ (=)) + V TI — 1 — 

• 
(yQ~~~ (0 0) )  +

i— N-i-I j=N+l j—N+1 j—l j—N+l

N 00 N N
I 1 + c/7 — ~ ,,. Q fl (=) I ~~ + c/7 — 

~~ I~Q~~
( )

j—l ial j—l 1—1

N N N N
I l  + ~/7 — 

~~ 
i~~(TI

3 
— c /7N ’

~ = 1 + c/7  — 2 
~i 

! (:~ — c/7N)
j—l 1—1 1—1 j—l

< 1 + €1 7 - (l—C/7)(l - c/7 - c/7) 1 + ~/7 - 1 + 3c/7 — 2c2/49 < 4 c/7 .

Thus f(t) - r(t)~ < ~~ 1Q
fl (0~) — < 3c/7 + 4c/7 - C .

j—1

2. Conditions for Equivalence. We are now ready to find the condItions for

Q-r.

Theorem 2.4. Let Q be a MR.? with steady state vector IT , and let r be a

renewal process. If Vt , I IQ(t)  = r(t)fl then Q-r.

Proof. If TIQ(t) = r(t)fl then Vn, t1, t 2 , - - -,

T I Q ( t 1) Q(t 2 )~ - - Q(t ~ )U = r(t
1
) !IQ(t2) Q(t )U

•r(t
1
) r(t2) 

... r(t )TitJ r(t
1) r(t.,) - . -  r(t )

~ 

_ _
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Theorem 2.5. If Vt , Q(t)U = Ur(t) then Q-r.

Proof. If Q(t)U — U r(t) then Vu , t 1, t 2, ~~~~~~~, t ,

Q(t
1

) Q( t2) - Q(t )U — Q ( t
1
) Q(t

2
) - - . Q(t~~ 1)U r ( tn)

— rtUr(t
1
) r(t2)~~- - r(t )  = r(t

1
) r(t2) 

— s -  r (t). a

Theorems 2.4 and 2.5 are special cases of the sufficient conditions for

weak lumpabi].ity that Serfozo gives in [10]. Theorem 2.4 says that if

the steady state vector , TI , is a left eigenvector of Q(t) for every t then Q-r ,

where r(t) is the eigenvalue of Q(t) corresponding to the eigenvector TI. Notice

that in theorem 2.5 it was not important that the starting vector was TI. Any

vector that satisfied Y U l  would have worked. This is because Q(t)U=tJr (t)

is a necessary and sufficient condition for strong lumpability of Q to r .

Theorem 2.5 says that if the row sums of the matrix Q(t) are the same for all

t then Q-r where r(t) is the co on value of the row sums of Q ( t ) .  If the row

sums of Q(t) are the same, then no matter which state the process is in, the

time until the next transition has the same distribution. Thus, knowing the

state that the process is in gives no extra information about the time until

the next transition. It is clear that in such cases the times between state

transitions is a renewal process. The intuitive justification for theorem 2.h

is less obvious, but most interesting cases of equivalence seem to be of that

type. We will see later that Burke ’s theorem is a simple corollary of theorem .~~~~ .

Let Q be a MR.? with a states (1 < n I ), and steady state vector . ~e

define the following subsets of Ri’. 

-~~~~~~~~~ - -~~~~~~~~~~~~~~ -~~~~~~~-~~~~~~~--_- • - - - -~~~~~~~_— -~~- --~~~~~ • --
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Definitions 2 .2 .

(A) Let .5 = (V c R~ : vQ( t )U = (v U) r ( t ) ,  V t }  where r ( t )  T I Q ( t ) U .

(B) Let V be the largest subset of S that is invariant under multiplication

by Q(t) (i.e. v c V~~~~~Vt , vQ(t)  ~ V ) .

(C) Let P — (v c R
n
~ v > 0, vU — 1). p is the set of probability vectors.

(D) Let K — V nP .

Lemma 2.6 .  S and V are subspaces of Rn. K is a compact and convex set

if n < = .

Proof. Clearly ( f l }  c .S and {0} c 5, so S has at least two elements. Say

~l’ ~2 ~ S. Then y 1Q(t ) U = r(t)(y
1

U) and y
2
Q(t)U = r(t)(y

2
U). Thus

(a y
1
+b’r 2)Q(t)U = r(t)(ay

1+ b 12)U so a y 1+ b y 2 c S .  Let W be any invariant

subset of S and let W* be the subspace generated by ~) .  Say w ~
k 

. k k
a~~v1 

where c U) 1=1 ,2, ~~~~~ k. But w Q ( t )  ~ a1w. Q (t ) = 2. a1wi—i i—i ‘ i—i

where w! c W since ~J is invariant. Thus w Q ( t )  c (U* , so ~J * is invariant. Since

V is defined to be the largest invariant set, it must be a subspace.

• - 
The set P of probability vectors in R~’ is closed convex and bounded . So is

PflV since Vis a subspace, thus K is compact and convex. 0

Consider the column vector Q(t)U. If v C S then Q(t)U = TIQ(t)U, Vt.

This says that ( — it) Q ( t ) U = 0 , Vt , which says that the vector c~u)

is orthogonal to the vector Q(t)U, Vt. Thus we have the following important

lemma .

Lemma 2.7. If Q is an n state MR.? and there exists times t1,t2, ..- t

such that {Q(t1)U , Q(t,)L’, Q(c )U) is a linearly independent set then S

~.s the subspace of R~ generated by {IT} -

—— • •  -- .• •- • — — •-p. _- -~ 
-- ~~ • • - 

~~ _‘s•- •
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Proof. If v C S than ( --

~~~~~~~~~ 

— 2) must be orthogonal to each Q (t)U. But

only the zero vector can be orthogonal to a independent vectors in R - Thus

the only elements of S are the points on the line through 1 and the orig in. a

We now show the importance of the sets V and K .

Theorem 2.8.. Q-r ~~~~ C V.

Proof. (~~~~-) If Q-r then 
~~~~~~~~~~~~~~ 

TIQ(t1) Q(t2) - - -  Q(t )U

= r(t1) r(t2) r(t). Say TIQ(t1) Q(t2) 
- Q(tn) ~ 

S. Then 3t such that

Q(t1) Q(t2) 
-
~~~~

- Q(t ) Q(t)U # ( !Q( t
1
) Q(t~)U) r(t). But this says that

Qi.r. Thus Vn, t1,t2,... ,t we have !IQ(t
1) Q(t2) Q(tn) c S. Let

Ct.? = (w: w = Q(t
1
) Q(t 2) 

... Q( t ) for some n , t1, t 2, . ,t }. CU must be a

subset of 5, and clearly CI) is invariant under multiplication by Q(t). Thus

U ~~ V. But TI c U) since IIQ( ) = It , so II c V.

( ‘~~==) If Ti C V then It c K. Let V C K. Since each element of Q(t) is

nonnegative, vQ(t) > 0. Also vQ(t) = v’ where v ’ c V . Finally , vQ(t)U =r(t)

since v c K so v’lJ a r(t). This implies that v(~~~~ 
) c K , so K is invariant

under multiplication by Q(t)/r(t). Thus IIQ(t
1
) Q(t

2
) “-  Q (t )U = r(t1

) r(t
2)-~~- 

r(t ).

Corollary 2.8.1. Q-r ‘~~~~~~~~~~~~
‘
~ c K.

Proof. If It c K then TI c V so Q-r. If Q~r then It c V - But IIU = 1 so

t K  a

Theorems 2.4 and 2.5 were sufficient conditions for Q-r which are

relatively easy to use in practice. Theorem 2.8 gives a necessary and
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sufficient condition but there is not yet any simple way of determining what

~ ‘ is. The following theorem is a necessary condition for Q-r which is also

useful in practice.

Theorem 2.9. If Q is a finite state NB? then Q-r~~~~r(t) is an

eigenvalue of Q(t), Vt. - I
Proof. If Q-r then 2 C K ,  so K is not empty. We have shown that if Q

is finite dimensional then K is compact and convex and invariant under

multiplication by Q(t)/r(t). Thus by the Brower Fixed Point Theorem [9],

Vt , such that 
~~~ 

t K and ‘~~
( Q ( t ) / r ( t ) )  = y~~. This says Y~

Q (t )

so r(t) is an eigenvalue of Q(t). a

Corollary 2.9.1. Q.r~~~~.d et (Q(t)—r(t)I) = 0, V t .

Proof. This is just a restatement of the theorem . ~

Although it is unrealistic to check to see whether r(t) is an eigenvaiue

of each Q(t ) , theorem 2.9 says that one can show that Q,r by merely finding a

value of t where r (t )  is not an eigenvalue. The following theorem is useful

in the same way.

Theorem 2.10. If Q is an a state MR.? (n < ~ and 2t1, t2, - 
~~, t such

that {Q(t1
)U , Q(t2)U , ~~

. - ,Q(c )u} is a linearly independent set then
Q.r .~~~~

. Q(t) = r(t)TI, Vt. -

Proof. By lemma 2.7, 5 is a one dimensional subspace, so either V = S

or V = ~0}. By theorem 2.8, Q_ r ~~~~~2 t V so K must consist of the single

vector {}. Since K is invariant under multiplication by Q(t)/r(t) we have

TIQ (t) = r(t):. The converse is a restatement of theorem 2.4. a 

- . 
• I
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Using the results so far , a rough algorithm for determining whether a

‘~RP is equivalent (or weakly lumpable ) to a renewal process can be formulated .

First of all , if a MR.? , Q, is equivalent to a renewa l process , the renewal

process it is equivalent to must be r where r(t) flQ(t)U, and 2 is the steady

state vector of the embedded Markov chain Q(=). The first step should be to

try to show that Q4r since in general that will be the case. If Q is an n

state NB? choose t1, t2 , .. . ,t randomly or otherwise and compute

{Q(t~)u. 
... ,Q(t )U}. If {Q(t1)U, 

. . - ,Q(
~~~)~

j} is a linearly independent set

(as it will be in general), then Q-r if and only if 17 is a left eigenvector

of each Q(t). Choose some t and perform the multiplication IIQ( t) .  If this

product is not r(t)fl then Q~ r. If TtQ ( t) = r(t)T the chances are it was not a

coincidence. See if TI is indeed a left eigenvector of each Q(t) by writing

out explicitly ItQ(t) as a function of t.  If TI is a left aigenvector of each

Q(t) then Q-r.

If ~Q(t1)U , “,Q(t )U} was not a linearly independent set, it becomes more

complicated . If dim(Q(t1)t.T, ,Q(t~
)U } = 1 check to see if U is a right

aigenvector of each Q(t) by summing the elements of the rows of Q(t). If the

row sums of Q(t) are the same for all t then Q is strongly lumpable to r which

implies equivalence.

Another way of trying to quickly show that Q/r is as follows. Choose t 1

and t
2 

and perform the multiplication (It — -
~
-
~
-
~~

--
~~ 

) Q(t2)U . I f  it t K then

so is 1IQ(t1)/r(t1). But for any v1 and v2 in K , (v1—v 7)Q(t)U = 0 Vt.

Thus if the result of the multiplication is not zero then Q#r.

If no conclusion has been reached yet then either try different values

of time or attempt to find the subspaces S and V. Finding S is easy, finding

V is much more difficult. The next section gives a more abstract description of

V and K.
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3. Equivalence as a Homomor phism. Let Q be an n state MR.? (1 < n 00) with

steady state vector 2. Associated with each c c [0,~~] is a ma:ri~ Q (t).

Let Q~ be the ring of matrices generated by {Q(t)~, t c [0 ,’.’]. For each

orobability vector - in R~ we have a map F~ : Q• — R where

(4) F
1
(A) =YAU .

A necessary and sufficient condi tion for equivalence can now be wri t ten  in a

very simple form.

Theorem 2.11. Q-r ~~~~~F,.. is a homomorphism.

Proof. ( ~~~~~) If Q.r then Vn , t1,t2, , t , Q(t~ ) Q( t
2
) . . .  Q(t )U =

(TIQ(t1)u)(:Q(t2
)U ) ( TI Q ( t )U ) . Also if A1, A, c ~ then 1(A1+A 2 )U = A 1 t + A ,U

so F. is a homomorphism.

( )  If F2 is a homomorphism then Yn, t~ , t 2 , ~~~~~~~ t ,

TIQ(t1) Q(t~,)- 
.. Q( t )U 00 (TIQ(t )U)(IIQ(t )U)~~ .(T!Q(t )tT) = r(t )r(t.~)~~-~ r(t ),- n 1 2 a 1 ~. n

so Q-r . a

Theorem 2.11 says that the question of whether or not a MR.? is equivalent

to a renewal process is identical to the question of whether a certain map

from a matrix ring to the real line is a homomorphism. If there were a good way

of deciding when there are homomorphisms be tween matrix rings and the reals

the analysis of equivalenc~e between simple MRP ’s and renewal processes would be

complete. This is certainly a deep question that will demand more research.

The maps {F
1
} also give an alternate characterization of the sets K and V.

I
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Theorem 2.12. y K ~~~~ F
1 
is a homomorphism .

Proof. (~~~~
.) If ‘~

‘ c K then TI c K , so Q-r. Thus F,~ is a homomorphism .

But K C S  , and from the definition of 5, F~ = F .

(‘~~~~~) Let T = {v: vQ(t)U = (vU) I Q (t )L ’},  and let

C’.’ = ~w: w yQ(t1) Q(t2
) . .  Q(t ) for some n,t1,t2, ~~ t } .

CU is a subset of T; for if not , there would be some t 1, t 2, ~~~~~~~~~~~ such

that yQ(t1) Q(t2)” Q(t ) ~ 1. But this would imply that for some t ,

yQ(t~~Q(t2
)—  Q(t )Q(t)U ~ (yQ(t 1)-- ~~

Q(t )U)(yQ(t)U) which says that F
1 
is

not a homomorphism. The steady s tate  vector must be in the closure of LI)

since It 00 u rn . 1Qa(00), thus Vc > 0, aw c CI) that satisfies w—It !U < c .

Also w can be chosen so that w U = 1  since yQ~ (00) U l , V n. Thus

Q(t)U—yQ(t)Uj = ITIQ(t)U—wQ(t)UI = Ifl— wQ(t) U I ii wju < c.
Since C was arbitrary, IIQ(t)U = yQ(t)U so U c T - But if P. c I then T = S,

s o y c K .  a

If we allow F
1 

to be defined for any vector i in R~, then by a similar

argument it can be shown that V is the set of all vectors , v, that make F a

homomorphism.

4. Examples.

EXAMP LE 1. Disney , Farrell and DeMorais [ 31 show that the output of

an MID/ Ill queue is a renewal process. The results obtained thus far  allow

for a quick verification of this fact.

Th e output process from an MID/ill queue is a two state MR.? with kernel

(Q 00
(t) Q01(t)

Q(t) =

\ 
Q10(~ Q11(t) 

~~~~~-~~~~~~~~~~~~~~~~~~
_•-._

~
. - _ -- - ._ _ _ • _ - • _
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where Q.~~(t) is the probability that

(A) a customer departs at time zero leaving i custcmers in the queue, and

(B) the next depar ture is before time t , and when that customer leaves

there are j  customers left  in the queue.

If arrivals are Poisson with rate A , and the service times are deterministic

with rate d, then

0, if t < d

t—d
= (

j Ae~~~e~~
d ds = e~~~ — e~~

t
, if t > d .

0

0, if t < d

Q (t) = t—d
01 J Ae~~~S ( l_ e _Ad

)ds = (l_e d)(l _ e (t~ d)
) if t > d .

0, if t < d ,

Q10(t) 
=

e~~~ if t > d .

0 , if t < d ,

Q11(t) =

i. — e~~~~ , if t > d.

Thus,

- ———— •~~~~~~~~ . •~~~~~~ 
- ‘—

~~~-~~~~~.- -
~~~~~~~ ~~

-- •. .~~~~
• —.—-

~~~~~~~~
.-

~~
• . .. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
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(l_e ~~
(t_

~~) (l_ e
_

)(l_ e
_ t _

~~)~~

Q(t) = ) l (t )
—Ad — Ad / (d ,~)
e l— e

where

0, i f t < d ,

1(t) =

(d,=) 1, if t > d

The embedded Markov chain is

/ —A d —A d
: e l— e

Q~~~) I
—Ad —Ad1— a

—Ad —Adso the steady state vector, U = (e , l— e  ). Performing the multiplication

TIQ(t), we get

U Q(t )  = ( ( l _ e ~~
t ) ~~~~ , (l_e ~~

t)(l_e
_
~~)) 1 (t) = (l_e ~~

t) 1 (t )rl .
(d,°’) (d,’=)

By theorem 2.4 we know that Q— r where r(t) = (l_e
_)
~
t) 1 (t) -

(d ,~o)

EXAMPLE 2. Burke’s Theorem [1 ] implies that the output from a steady state

M/M/l queue is a Poisson process. The output process is a MR.? with kernel Q(t)

where Q1~ (t) is defined exactly as in the first 
example, except that in this

case i and j range over all the nonnegative integers. If the service rate is

1.i , and the arrival rate is A then Q(t) has the form

_ _  j
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q0
(t) q1(t) q2(t) q

3
(t) q

4(t) 
-

f0(t) f
1
(t) f2(t) f

3(t) f4(t) 
-

/ 
0 f~(t) f1(t) f

2(t) f3(t) 
.

( 
0 0 f

0(t) f
1(t) f2(t) 

.

0 0 0 f
0(t) f

1
(t) -

0 0 0 0 f
0(t) 

. -

where

~t (As) 3 —As —Us A 11J j —(A-Ii.i)t ~ . 
______________f . ( t )  = .~~ e pe ds = j+1 

— i.iA e k+l(A +1i ) k=o ( j— k) !(X + I I )

q~(t) = JA e ~~
5 f.(t—s) ds

= 
A 1~j (1— 

—At
) — A ~~ e~~

t ~ 1
4+1 k+l -k(A+p)~ k=0 (A+~) p

j+ l ~ i-k e
_
~~~~

)t 
ti—k- P

k—0 p—0 (j-k—p)! (A-I.p) p

Because of the special structure of Q(~~
), it can be shown that the steady state

vector, ~ = (l— p)~~~ (l,p,p
2
, p3, ••) where p a A / p .  Performing the multiplication

UQ(t) we get

_ _ _ _ _ _ _  _ _ _ _ _  ~~~~~~~ - .  _ _ _
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( I I Q ( i ) ) .  = (l-p )1 
(q.(t) + 

~ 
f . _~ ( t )  k+1 )

-~ k=O 3

= (l_e
_A t

)(l_ p
_1
)p 3 = (i_ eat

) fl .

This says tha t  the stead y state ou tpu t  is a renewa l process w i t h  d i s t r i b u t i o n
—A

(1—c ) .

EXAMPLE 3. Now consider the M/ M/ l /N queue.  The ou tpu t  from this  queue

is an N + l  s t a t e  ~1RP w i t h  kernel  Q(t) =

7 
q 0 (t )  q 1(t )  q 2 (t )  

j N  
Ct )

/ 
f

0
(t) f

1
(t) f 2 ( t )  - 

j N

0 f
0
(t) f

1

(t )  f ~ f .(t)

I j =N— i

0 0 f0(t) ~N 3  ~ f .(t)
j=N—2 ~

0 0 0 . f~~~(t )  ~~ f .(t)
j=l ~

whe re q . ( t )  and f . ( t )  are as in the last example. The stead y s ta te  vecto r

p t N+l
ri N = 

1~~~~
N+l (1,p 

~ 2 p
3
, ~~~~~~~~~~~~~~~ where k ~N + e

If the s teady s ta te  outpu t from the N /N / i / N  queue is a renewal process

then the renewal process would ha ve to have d i s t r i b u t i o n

—At N+1 — lit

rN (t) 
00 HM Q (t)U = ~~ 

e 
N+1 r~÷ii — p  i— p

I - - ~~~~~~~~~ -— ~~~~~~--——~~ - - _ .—.--- —- ~~~~~~~~~~~~~~ -- - - - - - _ _ _ _ - _ _ -- - _ --— - — - — ~~~~~~ ______
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Assume t V. Then Yx, 
~~

QN(x) C V . Since V satisfies

N 

.. Nv L/ 
~~~~~~~~~~ 

( —
~~~~ 
) 
~ 

Vt , we must have ( 
~~~~ 

— )Q
N
(t)U a 0 ,V t .

QN (t ) U  has the form (a ,b ,b ,b , . .. ,b) where a and b are positive , thus

N

~ ~~~~~~ 
— UN ) Q

N
(t
~
.
~ 

a ( — 1)a + ______ l~~ -1)b ~

-Ax N+l
1—P 1—c (P N +e~ liX P 

~ ~
N)b

1~~
N+1 z1~(x) 1—~ 

-

Since rN(x) < 1 — ~~~~ each term in the expression for

TTN Q ()
( 

N 
— UN ) QN(t)U is strictly positive, so It1” ~ V. Thus by theorem 2.8,

r
N x

the output of an M/M/l/N queue is not equivalent to any renewal process. (See [i].)

5. Eciulvalence Between Finite State NRP’s. Let Q be a k state MR.? with

steady state vector U, let Y be an m state MR.? (m < k), and let {A1,A2 , A }

be a partition of the states of Q. Let TI be an m x k matrix defined by

0, if j ~ A1,

1’i i—  TI
1,

“Z ~a’ 
if j C A1,

aCA 1

and let ~J be a k 
x m matrix defined by

0, if i ~ A1
U —
- ii

1, if I C A
1 

-

- -- - 
-- - -  _ _
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Q(t)U is an m x in matrix whose (i,j) element is P...(X1 
C A1, T1 

< t X
0 

C A
1
).

Say F is the function that maps the state space of Q to {A 1,A2, -

Serfozo [10] shows that if {F ( X ) , T } is a MR.?, its kernel is flQ(t)U.

The definition of equivalence between a MR.? and a renewal process has a

natural generalization to equivalence between two finite state MRP’s.

Definition 2.3. Let Q be a MR.? with state space (1,2, . - .,k~ and steady
state vector TI. Let Y be an in state MR.? (in < k). Let F:(l,2,~~~,k -‘

be a partition of the states of Q, and define Ti and U as above. We say Q is

equivalent to Y via the partition F, (Q I) if

TQ(t1) Q(t2) 
.. - Q(t )U = Y(t1) Y(t2) ... Y(t).

Before attempting to produce conditions for this type of equivalence we

should know what this equivalence means. In the case where Y has one state

(a renewal process) we showed that equivalence is the same as weak lumpability.

If Q is (X~,T~) and Y is {Z~~S~} then definition 2.3 says that for each

i,j C (1,2, •~~.,m}, and y n,t1, •
~~i tn~

(1) P~ (X~ C A
1~
T~ It~ ,.”,i1I 

t
1~X~ C A

i
) = P(Z~~= i ,  Sn It~~~”,51 I t1!Z0= 1 .

For weak lumpability between Q and Y we would need that for each

i,j C (1,2,.. .,m} and Vn ,t11 t2, ~• , t~~~, i1,i2 
- C (1,2, ...,

(2) P
11(X C A1, Xn l  C ~~~~~ ••

~~~1 
C ~~~ T~ I ~~~~~~~~~ < t1~X~ C A 1)

P (Z a j ’  Zn_1 a in— i’ Z3~ 
= I, S I ~~~ ~~~~~ ,S1 I t1lZ 0 = 1).

It seems inconceivable that every Q and Y that satisfy (1) would also

satisfy (2) but all attempts to find a counter example have failed so far.

We can show that weak lumpability implies equivalence, though.

- 

-. _ _  _
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Theorem ~~~~~ If Q is weakly lumpable to Y via F then Q V .

Proof. Let Q be {Xn~T } and V be {Z n~
S }

~

( TI Q( t 1) ”~ Q(t ) U ) . .  a P~ (F (X ) = j~ T Itn~~~~Ti I t1!F(X0) = i)

k k k
= ~~ 

. 

...
. ~ P (P(x ) =j ,  F(X

1
) i~~1,...,F(X

1
) = ii,

i
l

a i  i~~=1 i

I ~~~~~ ~~ I t1!F(X 0 )=j)

k k

~ 
Pñ

(T < t a ; ~,T1< t1I F(X ) = j ,~~~,F(X1) = 1 , F(X 0) = i )
1 = 1 1  = 11 n—i

p (F(X ) = j ,. - ~,F(X1) i
1~ F(X~) 

a i ) .

Since Q is weakly lumpable to V we know that in steady state , F(X ) is

a MR.? with kernel Y(t) so

P .(T < t ,
- . • ,~~~~

< t
1
~~F(X~ ) j , . - - ,F(X0) = i)

- 

Y11 (t1) Y
i ± (t2) 

. . 

Y
1 1

(t5
)

— 
Y (co ) ~ (00) 

.~~~~~~~1,11 11, 12

- - and

P..(F(X ) aj,. ~,F(X
1

) = i
1
jF(X ) =1) a Y - (~

) V . ( )  
~~~~~~ Y . .(

~
) .1. fl 0 ~~~ il, 12 1n—l’]

Thus

k k 
~i,i1(t1) Y~ (t(IiQ(t1)~~

•Q(t )u) = . . . 
~~ (a,)l

l
a i 1

n—l ’ ~~~ Y~~~11
()

i
i
a 1 1

~~~~
al 

Y111
(t
1
)~~- . ~~~~~~~~~~~~~ a (Y(t

1) Y(t2) 
... Y(t~ ) )

11

-~~ ~~~~~~ -~~-- ~~~ ~--~~~~~~~~~ ~~~ - _ _ _
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Since the definit ion of equivalence between f in it e  s tate  MRP ’s is

analogous to the def ini t ion  of equivalence between a MR.? and a renewal process,

one might assume that the conditions for  equivalence would be similar.  First

of all , by theorem 2.13 any suff ic ient  condition for  weak lumpabii i ty will

also be a suff ic ient  condition for  equivalence , thus we have

Theorem 2.14. If Vt , ~Q (t )  = Y (t)It , then 
~

Theorem 2.15. If Vt, Q(t)TJ = UY(t) , then ~

Theorems2 .l4 and2.l5 can be proved the same way theorems 2.4 and 2.5 were

proved. They can also be found in Serfozo (11].

Assume that for each t , Y ( t )  is an invertable in x m matr ix  (in < ) ,  and

Q(t )  is a k x k matrix (in < k < oc) . Q(t) need not be invertable. Let M be

the set of all m x k matrices , M , with M~1 
> 0 and ML~ at where a is a scalar .

In other words M must have the form

xX . .x~Ix.”x1 0
M a

and each row sum must be the same.

If Y(t)~~ nQ (t) ~ M then it must be true that Y(t)~~flQ(t)U # I which

says that :Q(t)U ~ Y(t). Thus a simple necessary condition for equivalence
-_  

- is that Y(t)~~uQ (t) C M.

Let 5 (M CM :  MQ(t)tT a (MTJ)Y(t),Vt} and let V be the largest subset

of S that is invarient under multiplication by Y(tY~
1 on the left and Q(t)

on the right (i.e. M c V _—~~~Vt , Y(t)~~NQ( t) c V). Let K — (M c V : ML’ — I .

1:
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These def in i t ions  are analagous to the definitions in Section 2 and not too

su rpr is ingly we have

Theorem 2 .16 . - Q ~ ~ K.

Proof. (
~~~~~) Assume ~ K. Then 3t1, t 90. , t~ such that

Y ( t Y~
1 Y ( t n ~~~~~~~~~ 

- . .Y(t1)~~ flQ(t1)Q(t2) ... Q(t~) ~ M . But that says at so

that Y ( t ) - - Y ( t 1Y~
1TiQ( t 1)~~”Q(t ) Q( t ) U # Y(t )1 

~~ - -  Y(t
1Y~~ ,Q(t1

)-.. Q(t )

But if ~ 
I y then Y (t ) 1 Y ( t 1) 1nQ (t 1)~~• • Q ( t )u — I so

~ Y( t ~ ) “~
Y ( t n ) Y ( t )  which i sa  contradiction.

(—)
~~~~~ If TI C K then V11 , t1, t2 , , t Y(tn)

1
~ 

- 
~Y(t1) 

111Q(t1
) . . .Q(t )u — I, so

Q(t1
)~
. •Q(t )~J — Y(t

1
)- - .Y(t ). ~

In general Y(t) will not be invertable for all t .  This poses a serious

problem. In the renewal case this problem did not exist since r(t) was a

scalar , not a matrix. For equivalence we need ITQ(t) — Y(t)fl’ where in some

sense ‘ acts just like TI. Unfortunately , if Y(t) is singular we cannot solve

for ‘ uniquely, and we therefore have trouble defining the sets V and K.

Another result that carries over from the renewal case rather easily is that

equivalence is identical to a certain ring homomorphism.

Let Q~ be the ring generated by {Q(t)},t C [O,],and let V be the ring

generated by {Y(t)}, t c [0 , ] .  Define 
~2. 

-
~ V to be 

~It ,F(A) — AU.

Theorem 2.17. Q Y ~ >~~
_
~~~ is a homomorphism.

The proof here is identical to the proof in the renewal case .

One result that has no counterpart in the renewal case is

I
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Theorem 2.18. Let Q, Y and D be k, in and Z state simple MRP ’ s (k n ‘

If Q and V ~~D then G D.

To prove this theorem we need the following lemma .

Lemma 2.19. If 
~ 

Y and TI is the steady state vector for Q then the

steady state vector for Y is y where y .  = (i.e. 
~ 

flu).
— 

PCF (1)

Proof. Since the steady state vector is unique in the class of simple

MRP ’s , It suffices to show that y satisfiesYY( ) =

Since

0, if 1 ~ F~~(i),

U — ~j —l
-ij , if 1 c F (i),

~~ TI
PpcF~~(i)

we have

a yflQ(~)U = TIQ(oo)U 
a a y . D 

-

Proof of Theorem. Let It be the steady state vector for Q, y the steady

state vector for V and let 
~F and be the matrices induced by the partitions

F and G. We first show that 
~G~F — 

~G°F 
where is the Z x k matrix induced

on U by the partition GoF. First of all , if GeF(j ) ~ i then 
~~G~F~11 = 0.

If GeF(j) a j then since each column of and T~. has only one nonzero element ,

there is some b such that 
~~~~~~ 

— 
~~~~~~~~~~~~~ 

From the lemma ,

L. ~a
acF~~ (b) aCF~~ (b) 

a
(Yr’ )41... 

00 a ________________________ = _________________

LI) Z V Vp 
~
. £.. 

~~q

psG 1(i) pcG l(i)  gcr1(p) qc [GoF ]~~~(i) 

--- — _
~~~~~~- - - --~~~~~~~~~ ~~~

- -~~~~~~~~
—-

~~~~~~~~~~~~~~~~
--



Thus,

I “a I
(v ) = atF~~ (b) il~ ___________

T i l l  ~ II
I TI

q t[GoF J l(i) ~ j aCF~~-(b ) a j qC[GeF] 1(i) 
q

Thus,

0 , if GoF(j ) ~ i ,

(
~~~G

It
F

) . .  00 fl~13 
v , if GoF(j) = I

qt [GeF]~~~(i)

So 

~G~F 
= U GOF as desired .

If we let UF be the k x ~ sUmming matrix associated with F , and UG be

the in x 2. summing matrix associated with C, it is easy to show that

= 
~G°F 

where 
~G°F 

is the k x 9. suimning matrix associated with G°F.

Since Q Y, Vu , t1, ~~~~~~~ UFQ(tl)”’Q(t ~
1 F = Y (t1)~~~~

-Y (t).

Also, since Y D , !GY(t l) Y ( t n )U G D(T 1) D ( t 2 ) - - ”  D ( t ) .  Thus

~G~ F t l) t n~~F~G 
00 D (t i)

~~
•
~

D ( t n )
~ But this says

~G0F~~
tl)

~~~~~~
t

fl~~ G0F — D (t
1
)”~~D(t ), so 

~ 
G~F D. a

There are several open questions on the topic of equivalence between

f ini te  state MRP’s. Among them are finding an example of two f ini te  state

MRP’s, Q and Y, that are equivalent but not weakly lumpable; and finding

conditions for equivalence when the matrices Y(t) are allowed to be singular.

Li. - _ ___~~~~~~~~~~~~~~~~
__

~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ • - - ~~~~~ -
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If ~ -
F Y and V D , t hen we have shown that QG:F

D N ow suppo se Q Y and

Q D. Under what conditions is there a part i t ion , H, such that Y D?

other words , when is t here an H that makes the following diagram commute?

6. Equivalence on a Subset of [0 ,00] .  We return now to equivalence between a

MR.? and a renewal process. Say Q is an n state MR.? with steady state vector TI ,

r is a renewal process and Q - r .  Let Q’ be another n state MRP that has the

property that t < T implies tha t Q( t )  — Q ’(t). If t1 IT i l ,2,~~ .k then

= r(t1)”~r(ç. But since Q(t) = Q ’ (t) for t IT we also

have flQ ’(t
1)~ “Q’(tk)U = r(t

1)- 
..r(t

k) Although it is possible that Q ’ -

(in fact It might not even be the steady state vector for Q’) we do have a sort

of equivalence between Q’ and r on [0,T].

The motivation behind this section is that in general a NRP, Q, is not

equivalent to any renewal process and therefore computing probabilities of

successive interdeparture times involves matrix multiplication. If there is

some R such that if t1, t2,-~ •,tk C B then P(T1 I t1,
. •,Tk I tk) =

I t
1
) P(T1 I t2)-~~. P(T1 I tk), computing probabilities would only involve

scalar multiplication (so long as all the times are chosen from B). Also , it

seems interesting to consider the concept of a MR.? acting like different

renewal processes on different subsets of [0,00].
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Definition 2.1.. Let Q be an n state MR.? and let r be a renewal process.

We say Q - r on A if 3~y such that y > 0 and Vk , and c A ,

~Q(t1) ~~
Q (tk)U 

= r(tl
)...r(t

k).

Notice that if Q - r on A then Q - r ’ on A for  any r ’ tha t sa tisfies

r ’(t) = r( t), Vt t A. For an arbitrary MR.?, Q, one can always construct  a

set B~~ R such that  Q - r on B for  some r (although sometimes B will consist

of only one p o i nt ) .  Choose some t ~ f O ,=j .  By the Pe rron—Frobenius theorem ,

there is a largest positive eigenvalue , a(t) 
~ 

1, of Q(t) and an associated

eigenvector v(t) that satisfies v(t)U 1. Let B = {s: v(t) 0(s) = a(s) v(t)}

Clearly Q - a on B.

Definition 2 .5 .  If (A }, ~ C 3, is a cover of [0 ,00 ] ( i .e .  UA = [0,00]),B B
and for  each B ~ J there is a renewal process r~ such that Q - r8 on A8
then call ~A~ } a ren ewal—cover of Q.

Such a cover exists for  any Q since if necessary there can be a different

renewal process for each t 5 [0,=1. The interesting question is whether or

not one can find a finite or countable renewal—cover . If Q - r then there is

a renewal—cover with one element (i.e. Q - r on [0,00]).

Theorem 2.20. Say Q is a finite state MR.? such that Q
~~
(t) is a continuous

function of t for each i and j. Let a(t) be the largest positive eigenvalue of

Q(t) and let v(t) be its associated nonnegative, normalized eigenvector . If

the set fv(t)}, t z [0,00), is finite or countable then so is the smallest

renewal—cover , and there exists an open interval A~~ [0,00] such that Q -. a on A.

Proof. Let {v1,v2,- . ~} be a list of the elements of {v(t)} and let

An 
= {s: v~Q(s) = ci(s)v~}. (A~}~~1 2• .. is the desired renewal—cover . Say

_

~

_ . _-~ — _
~~~~~~---_ -. --—- —----- --~- - .- —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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t 1, t 2. A and — t .  Since Q (t) is continuous fin ~:~ Q ( t . )  = V O ~ t).

and fin vnQ (t.) 1i~ a(t.)v = a(t)vn. Thus v Q(t) = a( t)v so A is
1 +0 0  1 n n n fl

~-losed. By the Baire Category Theorem one of the A must contain an open

interval , a
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